Trading Inference-Time Compute for Adversarial Robustness
Sora is OpenAI’s video generation model, designed to take text, image, and video inputs and generate a new video as an output. Sora builds on learnings from DALL-E and GPT models, and is designed to give people expanded tools for storytelling and creative expression.
We’ve created GPT-4, the latest milestone in OpenAI’s effort in scaling up deep learning. GPT-4 is a large multimodal model (accepting image and text inputs, emitting text outputs) that, while less capable than humans in many real-world scenarios, exhibits human-level performance on various professional and academic benchmarks.
We trained a neural network to play Minecraft by Video PreTraining (VPT) on a massive unlabeled video dataset of human Minecraft play, while using only a small amount of labeled contractor data. With fine-tuning, our model can learn to craft diamond tools, a task that usually takes proficient humans over 20 minutes (24,000 actions). Our model uses the native human interface of keypresses and mouse movements, making it quite general, and represents a step towards general computer-using agents.
Large neural networks are at the core of many recent advances in AI, but training them is a difficult engineering and research challenge which requires orchestrating a cluster of GPUs to perform a single synchronized calculation.
We’ve scaled Kubernetes clusters to 7,500 nodes, producing a scalable infrastructure for large models like GPT-3, CLIP, and DALL·E, but also for rapid small-scale iterative research such as Scaling Laws for Neural Language Models.
We’re releasing an analysis showing that since 2012 the amount of compute needed to train a neural net to the same performance on ImageNet classification has been decreasing by a factor of 2 every 16 months. Compared to 2012, it now takes 44 times less compute to train a neural network to the level of AlexNet (by contrast, Moore’s Law would yield an 11x cost improvement over this period). Our results suggest that for AI tasks with high levels of recent investment, algorithmic progress has yielded more gains than classical hardware efficiency.